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The Darwin model of electromagnetic interaction is presented as

a self-consistent theory, and is sh6',m to be an excellent approxi:ma.-

tion to the t~xwell theory for slow electror:Bgnetic waves_ Since

the fast waves of the Maxwell theory are a.b3ent, it is convenient

for use in the computer simulation of the electromagnetic dynamics

of nonrelativistic plasma.
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Simulation studies of'plasma behavior have usually been based

either on the Coulomb model of particle interaction or on the full

Maxwell theory. For the consideration of electromagnetic effects, it

is not necessary to use the Maxwell theory, which includes the prora-'

gation of fast waves (whose group velocities are of the order of ~),

and which thus has the disadvantage of requiring a small time step.

Indeed, the many plasma phenomena in w~ich fast waves are unimportant

are well described by the Darwin modell of electrodynamics.

The DarHin model, in which there is no retardation, has been used

in the past to study electromagnetic interactions in microscopic

systems,2 and for the statistical mechanics of many-body systems,

both neutral3 and Plasma.
4

While for nonequilibrium plasma the Darwin

model has been little used in analytic theoretical work, it seems most

suitable for simulation studies, as pointed out by Hasagawa and Okuda)5

who rediscovered it in simulating one dimensional plasma dynamics

In tp..is raper we investigate the analytic properties of the Darwin

model. The model is usually treated as a second order (in vic) approxi

mation to the relativistic MaA~ell theOry.6 We present it here as a·

self consistent theory arising from a ];6rticle Lagrangian:

l' 2L = L -2 m.v. - C + M, where the kinetic energy is nonrelativistic)
J. J.

while the Coulomb energy, C =-21 E e.¢i + E e.¢ex(r,t), and the magnetic
:1. J. '"

1 I i ex'energy M =-2 E e.(v. c)oA + L e. (v.jc)·A (r.,t), include both pair
J. "'J. '" ). "'J. '" "'J.

interactions and interactions with external potentials. The internal

potentials are defined as

(la)
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(lb)

The magnetic interaction tensor is ~(£) == ~ (~ -I- rr)/r. The internal

potential (lb) is solenoidal because (%r)'XCr) = O. We therefore

choose the transverse or Coulomb gauge also for the external potential:

'\l'A
ex = O•....

The canonical momentum of a particle

(2)

i
is a function of the velocities of all the particles through A The

'"

Lagrangian eq,uation ~i == OL/ori is the standard Newton-Lorentz eq,ua

tion of motion, when the electromagnetic field js expressed in terms

of the }X>tentials.

"nien the external }X>tentials are static, the' invariance of L

under time-translation implies conservation of energy dR/dt = 0, where

the Hamiltonian H == 1: ;ei '!i - L has a simple form R == 1: ~ mi vi
2

+ C + M

in terms of velocities (but not in terms of momenta3,4). "Then the

external field vanishes, the invariance of L under space-translation

implies conservation of total canonical momentwJ: (d/dt)1: ;ei(t) = o.

If the set of discrete partfc1es is approx:i.mated by a continuum

with charge and current densities p(r,t) and j(r,t), the internal
""'" "" .""

}X>tentials [¢i,~i} become fields ¢in(£, t), ~in(~,t) satisf'ying

in
'\l·A == 0 • (3b)
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The SO,ITce of A
in

is the transverse (or solenoidal) part of ~, defined

most simply in'tenus of spatial Fourier transforms:

" /\ '

~T(~,t) =(J - kk).~(~,t). Note that the retardationless elliptic

eq1.k1.tion (3b) has the same form as the Poisson equation (3a), whose

solution is standard in simulation studies.

Of the four Danlin equations for the internal electroma.gnetic

field, only one:

c\l x ~in = 4v,i + d~Lin/?Jt

differs from Maxwell'sj the others are the same.

(4)

Here E =- v¢ is
"'L

the longitudinal (or irrotational) part of the ele2tric field. The

longitudinal part of (4), 0 = 4v~L + ~Lin/dt, expresses charge con

servation in agreement with (3a). The transverse part of (4),

cV ~ ~in = 4v~, differs from Maxwell theor~y in omitting d~in/dt,

and leads to the Biot-Savart law: ~in(£,t) = c-1J~rl(vl£ _ £,,-1) x

,t(~',t).

The differential conservation laws differ from those of the

Ma~lell theory. If we require the external field also to satisfy the

Darwin field equations, the energy equation is
-:c

E
.ex

- • J =
"" ""

(d/dt)[(IE1,1 2
+ B

2
)/8rr + L.sJd3y~ msy

2
f s J+ V{(c/4v);If x ~

+ (4Trc)-1(d~/dt)(d¢/dt) + L. Jd3y ~ m v
2
vf ] '

'" s 2 s '" s

where f (r,Y,t) is the particle distribution function, satisfying the
s "" ""

standard Vlasov equation. The momentum equation is, in the absence

of external fields, (d/dt)(c-lpA + L. Jd3y m vf ) ~- \l.p, where the
'" s s'" S =:::

momentum flux density is P =L. Jd3y m Yvf + I(B
2

+ IE
L
I2 + 2A.~ )/8rr

=::: s S""'" S =::: "" "" ""L
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To see how the Darwin model modifies the plasma dynamics} we con-

s i.der linc8.T oscillations of a uniform plasma. With .si(~}m) :=

( 5)

L~om the linearized kinetic equation. The dispersion equation m(k)
'"

r~sults from the vanishing of the determinant of (5). The MaxVlell

e'luH.tions} on the other hand} yield

(6)

For a cold plasma in a static magnetic field, g is independent of
..

~. Then a simple relation

exists between the Darwin and Maxwell re;f'ractive indices ~ and \1'

(eis the angle between ~ and '!2ex
.) Curves of \12(m), for e:= 0;

(I = rr/2, and 0 < e < rr/2, may be t2und, e.g., in Refs. 7 and 8. From

these diagrams (and from the associated analysis), we see that for

frequencies less than the highest resonant (n
2

= ro ) frequency, '\12 1

j s generally large compared to one, i.e., the phase velocity is much

less than c. The exceptions are the small frequency intervals near

the cutoffs (n
2

= 0), where In
2

1 < 1. We conclude that, except near.....

the cutoffs, the Dar,.,rin model agrees well with the Maxwell results.

2
For frequencie:3 above the highest resonance, \1 < 1 and therefore
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2
r~ < O. '1.'11e supraluminous ,laves of the MaX\.fell theory} Ylhich are

troublesome in plasma simulation} are replaced by evane})cent waves i~1

the Dan-fin model. In terms of an CJ.) vs k diagram} the faf;t branch

(m ~ k(; as l~ -+ co) simply disappears.

For u hot plasma} where ~ depends also on ~) no simple relation

like (7) can be found. However} comIBrison of (6) with (5) again leads

us to conclude that the Darwin model is reliable for slow waves (n
2 » 1)

and l.mreliable for fast waves (n2 < 1).
'"

F:Lnally) for an inhomogeneous plasma} the new modes (drift wave",)

have still lower frequencies and phase velocitie s} and hence the DarNin

model should be valid here as well.

We conclude that} in plasma simulation war}:} it is not necessary

to choose between a Coulomb model and the full Maxwell theo~Jj the

Darwin model presents a third intermediate possibility. It describes

electric and magnetic forces,} includes induced fields as well as static

fields) and yet retains much of the simple structure of the Coulomb

model. Since the electrodynamics of a nonrelativistic plasma usually

deals with slow waves} it is seen that the Darwin model has a wide

range of applicability.

In this discussion} we have made no attempt to deal with the

formulation of differencing schemes} nor to face the difficulties

pointed out by Hasega",a and Okuda concernlng boundary conditions. 5

We have benefitted greatly from the advice of C. K. Birdsall}

J. Byers} A. Hasegawa) J. Killeen} and A. B. Langdon.
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